A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
نویسندگان
چکیده
An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism.
منابع مشابه
A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011
The initial genome-scale reconstruction of the metabolic network of Escherichia coli K-12 MG1655 was assembled in 2000. It has been updated and periodically released since then based on new and curated genomic and biochemical knowledge. An update has now been built, named iJO1366, which accounts for 1366 genes, 2251 metabolic reactions, and 1136 unique metabolites. iJO1366 was (1) updated in pa...
متن کاملGenome sequence and analysis of Escherichia coli production strain LS5218
Escherichia coli strain LS5218 is a useful host for the production of fatty acid derived products, but the genetics underlying this utility have not been fully investigated. Here, we report the genome sequence of LS5218 and a list of large mutations and single nucleotide permutations (SNPs) relative to E. coli K-12 strain MG1655. We discuss how genetic differences may affect the physiological d...
متن کاملAnalysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays.
Genomes of prokaryotes differ significantly in size and DNA composition. Escherichia coli is considered a model organism to analyze the processes involved in bacterial genome evolution, as the species comprises numerous pathogenic and commensal variants. Pathogenic and nonpathogenic E. coli strains differ in the presence and absence of additional DNA elements contributing to specific virulence ...
متن کاملEvolutionary dynamics of full genome content in Escherichia coli.
The evolutionary history of the entire Escherichia coli chromosome was traced by examining the distribution of the approximately 4300 open reading frames (ORFs) from E.coli MG1655 among strains of known genealogical relationships. Using this framework to deduce the incidence of gene transfer and gene loss, a total of 67 events-37 additions and 30 deletions-were required to account for the distr...
متن کاملSystems approach to refining genome annotation.
Genome-scale models of Escherichia coli K-12 MG1655 metabolism have been able to predict growth phenotypes in most, but not all, defined growth environments. Here we introduce the use of an optimization-based algorithm that predicts the missing reactions that are required to reconcile computation and experiment when they disagree. The computer-generated hypotheses for missing reactions were ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Systems Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2007